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TRANSIENT RESONANCE OSCILLATIONS OF
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The transient response of a single-degree-of-freedom oscillator with a
slow-variant natural frequency and a small non-linear damping is under
consideration. The damping is modelled as a sum of elementary power functions
with respect to the system velocity. The passage through a resonance which is
induced by a sweep of the excitation frequency during run-up or run-down is
studied using the Krylov}Bogoljubov asymptotic method. Numerical calculations
are presented to demonstrate the validity of the "rst asymptotic approximation.
Asymptotic approximations for the maximum transient response and the
corresponding excitation frequency are derived analytically in the particular case of
a system with linear viscous damping. The obtained formulae are tested
numerically and compared to known approximations.
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1. INTRODUCTION

The widely used procedure in numerical modelling of mechanical systems capable
of vibration is the modal decomposition analysis [1] which yields a decoupling of
the equations of motion. The modal decomposition is possible only in the case of
linear viscous damping which can be used as a crude approximation of essential
dissipative mechanisms involved in a large number of systems. In fact, three
qualitative di!erent damping mechanisms should be taken into account
simultaneously. There are: material damping due to spatial energy dissipation in
a solid, aerodynamic damping arising from the surrounding medium and interface
damping by the adjacent attachments and joints. At least some of these sources of
damping, e.g., the interface damping have a non-linear character [2}4].

The usual approach in numerical models consists in the sophisticated
implementation of the equivalent coe$cients of linear damping using, e.g., the
method of harmonic balance [3, 4] or the empirical de"nition of a logarithmic
decrement ratio [5, 6]. In contrast to this it is suggested [7] to add non-linear terms
of all types of damping directly into the modal equations after the modal
decomposition of the undamped linear system. The admissibility to use this
principle for a non-linear system can be explained for two main reasons. Firstly, it is
assumed that the vibrating system can be treated as a weakly non-linear system, i.e.,
0022-460X/00/151271#17 $35.00/0 ( 2000 Academic Press
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damping forces are essentially less than inertia and elastic forces. In this case, the
response only slightly di!ers from the simple harmonic during each single vibration
cycle. This requirement holds in a large number of vibration problems. In this
paper, this is shown with reference to turbomachine blading. Secondly, there are no
closely spaced natural frequencies, i.e., the system has no internal resonances.
Under these conditions, the damping and the action of external periodic forces may
lead to a rapid elimination of higher harmonics of a response and to the
establishment of the basic tone of vibrations. The modal decomposition for such
system response is de"ned in reference [8] taking into account a small non-linear
damping.

Rotating structures like bladed disks in air engines are driven by oscillating
forces with slow-variant frequencies of their harmonics during transient operation.
Varying rotational frequencies can induce essential sti!ening in natural frequencies
of the system due to reasons of changing gyroscopic moments and centrifugal forces
[5]. In the non-resonant regime the sti!ening and the system damping contribute
slightly to the response. In the case of transition through a resonance the situation
di!ers and even a small perturbation in system parameters leads to a signi"cant
change in the response. The need in accurate prediction of the in#uence of the
system sti!ening and non-linear e!ects on the transient resonance response is
therefore an important problem. However, in most of the work done on this
subject, natural frequencies are assumed to be time independent because of
mathematical simpli"cation [9}11]. Irretier and Leul [12] added, in the
consideration the sweep of the natural frequency and estimated resonance
amplitudes using an empirical approach based on the analysis of numerical data.

The starting point of the present work refers to the Krylov}Bogoljubov
asymptotic method which is suitable for investigations of resonance regimes in
non-linear slow-variant vibrating systems. In the paper, this method is applied to
the investigation of a simple oscillator whose excitation frequency sweeps through
the natural frequency of the system during a transient operation. The sti!ening of
natural frequency and damping non-linearities are taken into account using the
modal equation of vibration which is proposed in reference [7].

2. DEFINITION OF THE PROBLEM

The modal equation of forced vibration of a mechanical system is considered in
the following form [7] (q and ¹ are the modal co-ordinate and time):

m
d2q
d¹2

#

N
+
i/1

c
i K

dq
d¹ K

ni
sgn

dq
d¹

#mu2(¹ )"p cos h (¹ ), (1)

where

u(¹ )"a¹#u
0
,

dh(¹ )
d¹

,X(¹ )"b¹#X
0
, (2)
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m is the modal mass; c
i
and n

i
are the constant damping coe$cients and exponents

and N is the number of di!erent damping mechanisms contributing to the total
damping; u(¹ ) and X(¹ ) are the natural frequency and the frequency of the
excitation force; p is the constant amplitude of the excitation force. The
time-variant natural frequency u(¹ ) accounts the possible sti!ening e!ect which is
typical in rotating machinery [5].

Note that at n
i
"0 and 1 the corresponding single dissipative terms in equation

(1) describe the Coulomb dry friction and the linear viscous damping respectively.
It is assumed that all other damping mechanisms may be presented by the
dissipative terms with di!erent values of exponents n

i
. However, exact values of the

damping exponents n
i
can only be found from experimental data.

The main assumptions concerning the vibration process can be noted as follows.
The natural frequency u(¹ ) varies slowly with time in comparison with the
excitation frequency X(¹ ):

DaD/ DbD(1. (3)

There are two non-dimensional small parameters d
1

and d
2

which characterize the
smallness of the sweep rate of the excitation and damping forces respectively. Let
the parameter

d
1
"b/u2

r
, d

1
@1 (4)

describe the small non-dimensional phase acceleration where u
r
is the resonance

frequency which corresponds to the crosspoint of the lines u (¹ ) and X (¹ ):

u
r
"(bu

0
!aX

0
)/(b!a). (5)

The smallness of the damping forces in comparison with the inertia and elastic
forces is assumed. This can be represented using the following small parameter:
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where the normalizing factors I(n
i
) are de"ned by Gamma functions as

I(n
i
)"

2

Jn

!(1
2
n
i
#1)

!(1
2
n
i
#3

2
)
. (7)

Such choice of the normalizing factors I(n
i
) provides the most simplest

non-dimensional description of the problem due to the equality in the "rst
approximation of energies dissipated by the origin non-linear system and the
equivalent linear system per unit oscillation cycle.

The resonance oscillations caused by the transition of the frequency of excitation
force X (¹ ) through the value of the system natural frequency u (¹ ) will be
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considered. The following initial conditions are "xed:

q (0)"q
0
, dq/d¹(0)"0. (8)

Taking into account inequality (3) and the conditions d
1
@1, d

2
@1, equation (1)

will be reduced to a weakly non-linear equation with slowly varying parameters.
Then the Krylov}Bogoljubov asymptotic method will be applied for the
investigation of its approximate solution.

3. FIRST ASYMPTOTIC APPROXIMATION

To consider the non-dimensional description of the problem, the following
variables

x"d (q/qL ), qL "p/mu2
r
, t"u

r
¹, (9)

where

d"maxMd
1
, d

2
N (10)

can be introduced. In terms of these variables, equation (1) can be conveniently
rewritten in the form

d2x
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#o2 (q)x"d A!
N
+
i/1

rci
I (n

i
) K

dx
dt K

ni
sgn
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dt

#cos h(t)B , (11)

where q"dt is the &&slowing time'' and
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1
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(1!g
0
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0
"
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dh(t)
dt
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2
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0
. (12)

According to the de"nition of non-dimensional variables x and t the coe$cients
r
1
, r

2
, rci depend on the value d which corresponds to the maximum small

parameter involved. This maximum is unknown in advance because of the damping
coe$cients and the operating parameters may vary in a large range dependently on
the problem considered. Therefore, two possible cases should be taken into
account. In the case d

1
'd

2
from the relations (4), (6) and (9) follows
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and for d
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one obtains
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Using relations (3), (4) and (6) the following inequalities

0)r
1
(r

2
)1, 0(rci)1, i"1,2, N (15)

can be established if relations (13) or (14) are adopted.
Equation (11) corresponds to a single degree-of-freedom system with small

non-linearity and slowly varying natural and excitation frequencies. An
approximate solution of equation (11) can be found using the Krylov}Bogoljubov
asymptotic method [8] which is suitable for the study of the resonance zone and
also transitions through the latter from the non-resonance zone. According to this
method, the "rst approximation of the solution of equation (11) can be represented
in the form

x"a cos(h#u), (16)

where the functions a and u are postulated as solutions of a system of di!erential
equations according to the following statement.

If the functions a and u are the solutions of the system of ordinary di!erential
equations

da
dt

"!

da
2 A

r
1

o(q)
#

N
+
i/1

rciani~1oni~1(q)B!
d sinu

o (q)#g (q)
,

du
dt

"o (q)!g(q)!
d cosu

a(o (q)#g(q))
,

(17)

where the parameter d is su$ciently small, then an approximate solution of
equation (11) can be represented by expression (16) with an accuracy of d2 for
a "nite interval t3[0, ¸], ¸'(1!g

0
)/d.

The main advantages of the Krylov}Bogoljubov "rst approximation are:

f The equations of the "rst approximation provide the de"nition of an amplitude
envelope and a phase of the response. The maximum of the transient resonance
response can be found from the smooth envelope function a (t) instead of an
analysis of the fast oscillating function x (t). These equations can be reduced to
qudrature formulae [8] in the case of linear viscous damping n

i
"1.

f If monofrequency vibrations are considered, it is possible to show that the
resulting response may be approximated as a linear superposition of
quasi-normal responses where each quasi-normal response is de"ned by an
equation of type (11). In reference [13] this decomposition is considered in detail
and also some assumptions concerning the constitutive equations of damping
forces are discussed.

3.1. BACKGROUND OF ASYMPTOTIC APPROACH

An asymptotic approach, which is used for the investigation of the system
response, can be used only if the non-dimensional parameters d

1
and d

2
are



TABLE 1

Damping coe.cients for turbine blades

Type of blade d
e

One-piece disk blade 0)004}0)008
Fir-tree rooted blade 0)012}0)02
Cooled blade 0)02}0)03
Blade with root damper 0)036}0)048
Blade with shroud damper 0)016}0)048
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su$ciently small. To verify these requirements, consider reasonable values of the
parameters d

1
and d

2
with reference to turbomachine blading.

Using relation (4) the value d
1

can be estimated if the angular acceleration of the
nuzzle excitation b and the modal resonance frequency u

r
are known. In

air-engines the "rst modal frequency of turbine blades varies in the range of
150}800 Hz. The run-up time from the rest to the maximum angular velocity
of 200 rpm may in extreme cases be 1)8}2 s. Taking into account that the number of
nozzles is 30}40, the angular acceleration and the resonance frequency can be
estimated as b"4000 l/s2 and u

r
"940 l/s. Substituting these values into relation

(3), the maximum non-dimensional acceleration can be found: d
1
"0)0045.

The maximum non-dimensional damping d
2

can be estimated by the coe$cient
d
e

of the linear viscous damping d
2
)d

e
using, for example, the technique of an

equivalent linearization of the stationary response. For the turbine rotor blades the
ranges of equivalent damping coe$cients d

e
from references [5, 6] are summarized

in Table 1.
To verify the validity of the "rst asymptotic approximation (17), numerical

simulations are performed for the values of non-dimensional small parameters
d
1

and d
2

which are vary in the range estimated in this section.

4. APPROXIMATIONS

Now consider the response of a system with the linear viscous damping. In this
case it is possible to evaluate an approximate asymptotic solution in quadratures.
In the following analysis these quadrature formulae are investigated by means of
the complex contour integration.

4.1. EXACT ASYMPTOTIC SOLUTION

The non-dimensional modal equation (11) for the system with linear viscous
damping N"1, n

1
"1 has the form

d2x
dt2

#rcd
dx
dt

#o2(q)x"d cos h (t), (18)

o (q)"r
1
q#1!r

1
(1!g

0
),

dh
dt

,g(q)"q#g
0
. (19)
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An approximate asymptotic solution of this equation can be found in the form (16)
where according to equations (17) the functions a and u are solutions of the
following system of equations:

da
dt

"!

da
2 A

r
1

o (q)
#rcB!

d sinu
o (q)#g(q)

,

du
dt

"o (q)!g (q)!
d cosu

a(o (q)#g(q))
.

(20)

Using the change of variable

z"ae*u, (i"J!1) (21)

the last system of equations reduces to a linear di!erential equation of the "rst
order with respect to the variable z which can be easily integrated. Using this
integral the quadrature of the amplitude as a function of the excitation frequency is
obtained:

a2(g)"k
1

e~rcg
r
1
(g!1)#1

Dx
0
#k

2
J D2, (22)

where

J"P
g

g0
g
1
(j)e(1@d)g2(j)dj (23)

and g
1
(j), g

2
(j), k

1
, k

2
are

g
1
(j)"

Jr
1
(j!1)#1

(1#r
1
)j#1!r

1

e1@2rcj, (24)

g
2
(j)"

i
2

(1!r
1
)(j!1)2, (25)

k
1
"(1!r

1
(1!g

0
))ercg0, (26)

k
2
"

!i

J1!r
1
(1!g

0
)
e~(*@2d) (1~r1)(g0~1)2~(1@2)rcg0. (27)

Thus, the calculation of the amplitude is reduced to the evaluation of the integral
J. In the next section asymptotic estimations of this integral are considered in terms
of elementary functions.



Figure 1. The integration contour on the plane z"j#ik.
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4.2. SADDLE-POINT METHOD

The investigation of the integral J is di$cult due to fast transient oscillations of
the function to be integrated. However, the complex contour integration gives
a successful method of solution, if we apply the saddle-point method [14] which is
suitable for an asymptotic integration of the function with a su$ciently large
exponent. According to the saddle-point method the contour of integration should
consists of level lines l

k
along which the imaginary part of the function

g
2
(z)"g

2
(j#ik) (28)

is constant.
Using this approach the integration contour is de"ned as a combination of the

segment [g
0
, g] and lines l

0
, l

1
, l

2
which are parametrically de"ned by the relations

l
k
: z

k
"j#ik

k
, k"0, 1, 2, (29)

where

k
0
"!J(j!1)2!(g

0
!1)2, j3 (!R; g

0
], (30)

k
1
"j!1, j3 (!R; R), (31)

k
2
"J(j!1)2!(g!1)2, j3[g;R). (32)

Performing an integration along the contour shown in Figure 1 and taking into
account that there are no singularities enclosed within this contour we obtain by
the Cauchy theorem the following expression:

J"I
1
!I

0
!I

2
, (33)

I
k
"P

lk

g
1
(z)e(1@d)g2(z) dz, k"0, 1, 2. (34)
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4.3. ASYMPTOTIC EVALUATION OF THE INTEGRALS

The integrals I
0
, I

1
, I

2
can be easily estimated up to the terms of the order d using

the Taylor series of functions to be integrated. Consider these expansions in powers
of the small parameter d in the vicinities of corresponding bounding points.

According the relations (29), (30), and (34) the integral I
0

can be written in the
form

I
0
"e(*@2d) (1~r1) (g0~1)2 P

g0

~=

g
1
(z

0
)
dz

0
dj

e~(1@d)(1~r1) (j~1)k0 dj. (35)

Changing of the variable in integration

q"(1!r
1
) (j!1)k

0
(36)

and considering the Taylor series of the function to be integrated in the small
right-hand vicinity 0(q(e, integral (35) can be estimated as

I
0
"

1

J2(1!r
1
)
e(*@2d) (1~r1) (g0~1)2 P

e

0
A
iJ2g

1
(g

0
)

1!g
0

#O(q)B e~(q@d)dq#o (d). (37)

Evaluating this integral gives the asymptotic approximation of the integral I
0
:

I
0
"ie(*@2d)(1~r1)(1~g0)2

g
1
(g

0
)d

(1!r
1
)(1!g

0
)
#o (d). (38)

Now consider the integral

I
1
"(1#i) P

=

~=

g
1
(z

1
)e~(*@d)(1~r1)(j~1)2 dj. (39)

By analogy with an evaluation of the integral I
0
, the following new variable q of

integration

q"(1!r
1
)(j!1)2 (40)

together with the corresponding Taylor series can be applied which yields

I
1
"

(1#i)

J1!r
1
P

e

0

(g
1
(1)#O(Jq))

e~q@d
Jq

dq#o (d). (41)

Evaluating this integral gives the following approximation:

I
1
"

Jn
4

(1#i)e(1@2)rcS
d

1!r
1

#o(d). (42)
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Finally, consider an asymptotic estimation of the integral

I
2
"e(i@2d)(1~r1) (g~1)2 P

=

g
g
1
(z

2
)
dz

2
dj

e~(1@d)(1~r1)(j~1)k2 dj. (43)

Taking the change of the variables u, p:

u"
1
d

(1!r
1
) (j!1)k

2
, p"

1!r
1

2d
(g!1)2 (44)

in integral (43) gives

I
2
"

1
2S

d
1!r

1

e*p P
=

0

g
1
(z

2
)
(A (p, u)#iB(p, u))

Jp2#u2
e~u du, (45)

where

g
1
(z

2
)"g

1 A1#S
d

1!r
1

(B (p, u)#iA(p, u))B , (46)

A(p, u)"J!p#Jp2#u2, B(p, u)"Jp#Jp2#u2. (47)

Considering the following expansion of the right-hand side of relation (46)

g
1
(z

2
)"

1
2

e(1@2)rc A1#
1
2

(rc!1)S
d

1!r
1

(B(p, u)#iA (p, u))B#o(Jd) (48)

and substituting this series into integral (45) gives the asymptotic approximation of
the integral I

2
:

I
2
"

1
4S

d
1!r

1

e(1@2)rc`*p AM(p)#i (rc!1)S
d

1!r
1
B#o(d), (49)

where

M(p)"P
=

0

(A (p, u)#iB(p, u))

Jp2#u2
e~udu. (50)

In the following analysis the derived approximations (38), (42), and (49) will be
used to evaluate the maximum amplitude during the transient excitation.

4.4. APPROXIMATION OF THE MAXIMUM AMPLITUDE

The maximum amplitude can be calculated by quadrature formula (22) where,
according to relation (33), the integral J is evaluated by means of approximations of
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the integrals I
0
, I

1
, and I

2
, which are given by the expressions (38), (42), and (49). To

evaluate the integral I
2

it is necessary to know the excitation frequency g"g
max

corresponding to the maximum amplitude a
max

. In the present work g
max

is
assumed to be the smallest root of the equation

da2(g)
dg

"0, (51)

which is larger than 1 or, in other terms, the largest peak of an amplitude occurs in
a small right-hand vicinity of the resonance point g"1.

Di!erentiating relation (22), the last equation can be written as

k
1

g
1
(g)

dg
Dx

0
#k

2
J D2#k

1
g
1
(g) A(x0

#k*
2
J*)

dJ
dg

#(x
0
#k

2
J )

dJ*
dg B"0, (52)

where asterisks denote complex conjugated values.
To evaluate the left-hand side of this equation the following relations

dJ
dg

"g
3
(g)e*p,

dJ*
dg

"g
3
(g)e~*p (53)

can be found di!erentiating integral (23) and taking into account the second
relation (44).

According to relation (33), where the integrals I
0
, I

1
, and I

2
are given by the

expressions (38), (42), and (49), the integral J can be represented in the form

J"
1
2S

d
1!r

1

e(1@2)rcAe*(n@4)J2n#
1
2

e*pM(p)B#O(d). (54)

Taking into account the relations (53) and (54) and omitting the terms O (d),
equation (52) can be approximated by the following equation with respect to p:

cosAp!
n
4B"

1

2J2n P
=

0

A (p, u)

Jp2#u2
e~udu. (55)

Solving this equation numerically one obtains p+2)32725 which together with the
second relation (44) leads to the following approximation of the critical frequency
of maximum response:

g
max

+1#2)157S
d

1!r
1

. (56)

Substituting the obtained value p into integral (49) and collection the integrals (38),
(42), and (49) in relation (22) yields the desired approximation of the maximum
transient response.



Figure 2. Response and amplitude versus excitation frequency, d"0)003, r
1
"0)333, r

2
"1,

rc"1)667, n"2)0.
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The analysis of the obtained approximate formulae can be summarized as:

f It is proved theoretically that the resonance frequency g
max

does not depend on
the damping in the "rst approximation. In the particular case of a system with
constant natural frequency the derived approximations are in correspondence
with the results presented by Fearn an Millsaps [10] and Markert and Seidler
[11].

f Oscillations of the maximum transient response with respect to a change in the
sweep rate of the natural frequency are established. These oscillations arise due to
the in#uence of the exponent of the function I

0
given by relation (38). This

property can be explained as a sti!ening induced instability.

5. NUMERICAL RESULTS

A series of calculations was performed to verify the validity of the "rst
approximation (16) for some reasonable values of the parameters d, r

1
, rci . Typical

results of a numerical integration of exact equation (11) (response x) and its "rst
approximation (16) (amplitude a) are shown in Figures 2 and 3 where only the
single non-linear damping term (N"1) was taken into account. The amplitude
a and the response x are represented as functions of excitation frequency g. A good
accuracy of amplitude envelopes can be observed especially in the resonance
region.

Figure 4 shows the maximum transient response a
max

which is calculated at
di!erent values of the damping exponent n (parameters d, r

1
are "xed). Each of the

three curves corresponds to calculations with the same value rc . Boxes represent the
values a

max
which are calculated from the exact equation (11), crosses correspond to

the "rst approximation (16). Figure 5 represents the values of excitation frequency
g
max

corresponding to the maximum transient response a
max

. These calculations are



Figure 3. Response and amplitude versus excitation frequency, d"0)003, r
1
"0)333, r

2
"1,

rc"1)667, n"0)6.

Figure 4. a
max

versus n, d"0)003, r
1
"0)333, r

2
"1.
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performed at the same values of parameters as for the series in Figure 3. Negligible
small errors of a

max
and the corresponding frequencies were found for all values of

the parameters of calculation in the intervals considered. This indicates the validity
of the "rst approximation for the maximum transient response investigations.

In order to verify the derived formula of a maximum response, some numerical
results are given in Figures 6}8 for reasonable values of the parameters d, r

1
, rc .

Typical results of the comparative analysis of the derived formula for the maximum
transient amplitude a

max
, the exact solution and the approximation suggested by

Irretier and Leul [12] are shown in Figure 6. In contrast to known approximations,
evident oscillations of a

max
can be correctly predicted using the new approximation.

These oscillations have an exponentially increasing character with respect to the
increase of the sweep-rate parameter r

1
and can be observed in Figure 7 which

presents exact values of the maximum transient response calculated numerically.



Figure 5. g
max

versus n, d"0)003, r
1
"0)333, r

2
"1.

Figure 6. Comparison of maximum amplitudes, d"0)005, rc"0)092. *e* Irretier and Leul
1995; *h* exact solution; *#* new approximation
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Figure 8 shows an error D of the obtained approximate formulae

D"

Da
max

!a@
max

D
a
max

, (57)

where a
max

is the exact maximum amplitude which was calculated by numerical
integration of equation (11) and a@

max
is the approximation which was calculated by

substitution of the approximate critical frequency (56) into the quadrature formula
of the amplitude (22). The clearly observed peak in Figure 8 indicates that the
critical frequency of a maximum response g

max
and the resonance frequency g"1



Figure 7. Exact maximum amplitudes of the response, drc"0)01.

Figure 8. Error of approximate formulae, drc"0)01.
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are not closely spaced for all values of the system parameters from this region,
therefore g

max
can not be found using equation (51). In this case an amplitude

reaches its maximum value instantly after starting due to the su$ciently large value
of the integral I

0
at the beginning time interval.

6. CONCLUDING REMARKS

An applicability of the "rst asymptotic approximation in transient vibration
problems is established taking into account the sources of non-linear damping and
a possible sti!ening in natural frequencies.
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The non-linear damping law considers a sum of elementary power functions with
respect to the modal velocity (1). Basing on physical reasons two small
non-dimensional parameters are de"ned to characterize the smallness of damping
forces and a slow run-up during the transient operation. Introducing the
non-dimensional response function the problem is reduced to the investigation of
a weakly non-linear equation with a slowly varying natural frequency. The
harmonic balance method is applied to obtain equations of the "rst asymptotic
approximation, which are tested numerically for reasonable values of the system
parameters. Upper estimations to damping coe$cients and sweep rates of an
excitation are obtained with reference to turbomachine blade vibrations.

Theoretically based approximation of the maximum transient repsonse which
takes into account the dependencies on sweep rates, damping and initial conditions
is worked out for a system with a linear viscous damping. This provides a simple
analysis of qualitative e!ects arising due to time dependent properties of a system
and can be used to estimate correctly the modal quantities in model updating
algorithms. A good agreement with numerical simulation data is established. The
oscillations of the maximum amplitude with respect to a change in the sti!ening
parameter of the natural frequency may be a source of the circular scattering of
maximum amplitudes in structures with rotational symmetry during a tansient
operation.
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